A design influenced by traditional stems with long-term clinical experience gives the VerSys Cemented Hip Prosthesis a solid foundation of success. Distinctive proximal and distal centralization options help maintain a uniform cement mantle. In addition, proximal macrotexturing enhances the cement/metal interface.\(^1\), \(^2\)

SATIN FINISH on forged, high-strength Cobalt Chrome enhances the cement/prosthesis interface.

FLAT A/P SIDES facilitate passage of the stem through the bow of the femoral canal and provide rotational control distally.

DISTAL CENTRALIZER, with a "5-point-star" design configuration, helps improve cortical diaphyseal contact and stem alignment compared with distal centralizers having four prongs.

TAPERED DISTAL TIP DESIGN helps reduce strains in the cement as compared to conventional stems with distal hole designs.\(^3\), \(^4\) The distal centralizer fits over the outside diameter of the stem tip.

RANGE OF MOTION Optimized neck geometries permit wide range of motion.
Proximal Macrotexturing enhances shear strength at the cement/metal interface.\(^1\)\(^2\)

Satin Finish on forged, high-strength Zimaloy® Cobalt-Chromium-Molybdenum Alloy is consistent with traditional stems and has proven successful in long-term clinical studies.\(^7\)

Proximal Sleeve Centralizer option is made of PMMA and designed to help the surgeon achieve a uniform cement mantle around the stem.

Trapezoidal Shape with broad medial and lateral surfaces minimizes compressive and tensile stresses.\(^5\)\(^6\)

V-Lign® Instruments, conveniently placed in one tray, are designed to help facilitate an easy and quick procedure.

Progressive Neck Lengths facilitate leg length and offset restoration while minimizing cement mantle microstrain.\(^8\)

Extended Offsets are possible because of a parallel medial neck shift that does not change the stem’s 135-degree neck angle or increase leg length.\(^2\)\(^9\)

V-Lign Proximal Centralizer helps achieve a uniform proximal cement mantle through accurate M/L and A/P alignment.\(^7\) V-shaped machined grooves in the calcar surface assist in positioning of the implant within the canal.

<table>
<thead>
<tr>
<th>Calculated Range of Motion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
</tr>
<tr>
<td>-3.5 A/P</td>
</tr>
<tr>
<td>-3.5 M/L</td>
</tr>
<tr>
<td>0 A/P</td>
</tr>
<tr>
<td>0 M/L</td>
</tr>
<tr>
<td>+3.5 A/P</td>
</tr>
<tr>
<td>+3.5 M/L</td>
</tr>
<tr>
<td>+6° A/P</td>
</tr>
<tr>
<td>+6° M/L</td>
</tr>
<tr>
<td>+10.5° A/P</td>
</tr>
<tr>
<td>+10.5° M/L</td>
</tr>
</tbody>
</table>

* Measured with 48mm Std. Trilogy Liner and 28mm Heads
\(^*\) Clinical range of motion will vary with different head/liner combinations.
\(^**\) Skirted head components

Head VerSys Length Cemented

Clinical range of motion will vary with different head/liner combinations.
VERSYS HIP SYSTEM *

Today’s surgeon faces the increasing challenge of meeting the clinical needs of patients with cost-efficient solutions. The VerSys Hip System addresses these concerns through common instrumentation, surgical innovation, and a wide range of implant options to meet virtually all patient needs.

For more information regarding the VerSys Cemented Hip Prosthesis, contact your Zimmer representative or visit us at www.zimmer.com

3 Estok DM, Ramamurthi BS, Weinberg EW, et al. A stem design changes to reduce peak cement strains around cemented total hip arthroplasty by 45%. Presented at the 1996 AAOS.

* Various components of the VerSys Hip System are covered by one or more of the following: U.S. Patents 4,281,420; 4,336,618; 4,491,987; 4,795,472; 4,963,155; 5,013,324; 5,018,285; 5,089,003; 5,156,624; 5,192,323; 5,126,362; 5,480,453; 5,496,375; 5,569,255; 5,624,445; 5,702,485; 5,725,596; 5,755,811; D 397,220.